
Floating water quality islands in Hicklin Lake, White Center

Sally Bartley Abella Science and Technical Support Section King County Water and Land Resources Division

Where is Hicklin Lake and its islands?

A brief(!) history of Hicklin (Hicks, Garrett) Lake:

- Open water wetland dredged for storage capacity for golf course in the 1930s.
- King County purchased in the 1940s and created Lakewood Park, including swim beach and fishing dock.
- Combined sewer system split into two systems in late 1950s – old lines used for storm water and rerouted into Hicklin Lake.
- High bacterial counts found in the 1960s Beach closed recurrently; becoming permanent in 1991.
- Flooding during winter storm events. Pump installed to control water levels; water goes to Puget Sound.
- WDFW fish stocking ended in 1992. Dock dismantled 2012.
- Nuisance and toxic algae concerns result in first alum treatment in 2005, followed by a second treatment in 2011. Floating islands in 2013.

Floating islands project – the dry details:

- Friends of Hicklin Lake asks for floating islands as an alternative to future alum treatments.
- Island suitability was investigated: water quality benefits, habitat enhancement, costs, maintenance.
- Funding leveraging a WDOE algae control grant with supplementary King County project funding, affording 2 islands of 600 ft² each and WQ monitoring for 2 years.
- Biomatrix Water / Herrera Environmental selected to provide platforms and direct installation in July 2013.
- Planting design by King County staff, combining sedges, rushes, and bullrush with willows and native ornamentals such as Nootka Rose, Ninebark and redtwig dogwood (FOHL request : make them pretty!).

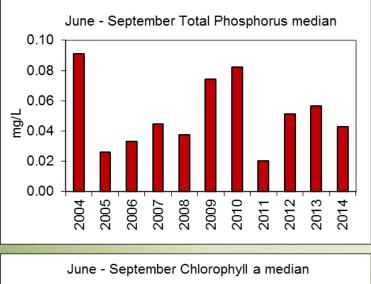
Installation: a community event

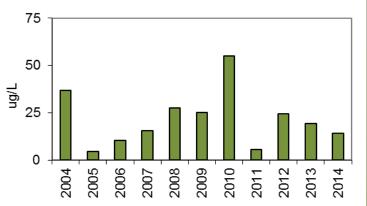
- King County staff and contractors,
- Washington Conservation Corps team,
- KC Youth Source interns, and
- University of Washington students

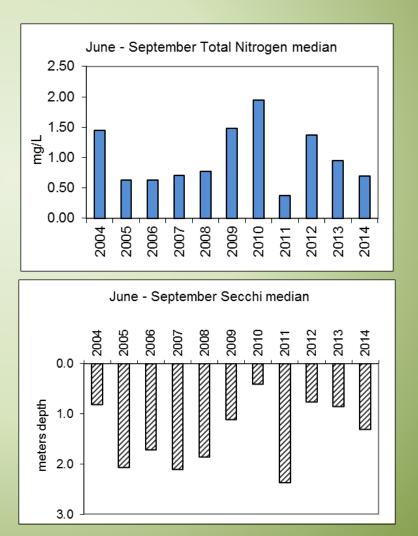
The lake level was LOW! Note lack of emergent vegetation around shoreline.

Installation: anchoring in place

Maintenance and lessons learned:


- Annual weeding in late spring sufficient; check-back in fall.
- Mortality less than 10%, mostly small sedges planted high.
- The shrubs will need to be pruned regularly.
- Blown-in weeds can establish quickly.
- As the plants grow, it's harder to maintain the plants ...need chest waders to get on the islands.
- Ducks stopped by fencing, but do rest on the edges.
- Kids throw rocks! Center placement helps.





Water quality monitoring:

Important dates: April 2005 first alum; May 2011 second alum; July 2013 floating islands

Dynamic media columns:

- Inert material to create underwater surface area like root systems.
- Can remove and squeeze material off to measure N and P content.
- One column from each island, June and September in 2014.
- Measurements from one column in Fall 2013 produced similar values.
- NOTE: Observation of large root systems at the edges suggest that more biofilm may be on living roots than on the columns.

	Total mg / media column				
		Total N	Total P		
East island	6/10/2014	11.85	1.67		
	9/16/2014	66.56	10.24		
	Increase %	562	613		
West island	6/10/2014	9.94	1.37		
	9/16/2014	54.75	8.71		
	Increase %	551	635		

Metals and water quality standards:

A745-1m	Element	5/14/13	6/11/13	7/8/13	8/20/13	9/17/13	10/15/13
2013	hardness	20.3	21.4	22.1	20.8	21.2	18.5
	рН	6.58	6.82	7.6	9.29	6.72	6.74
	Deg-C	18.4	20.8	24.0	22.8	19.5	12.0
Arsenic	As	1.36	1.75	2.31	3.03	2.63	1.53
Cadmium	Cd	0.05	0.05	0.05	0.05	0.05	0.05
Chromium	Cr	0.38	0.34	0.37	0.31	0.40	0.44
Copper	Cu	4.17	3.03	3.97	3.05	3.92	4.29
Lead	Pb	2.63	2.83	2.82	3.04	2.8	2.17
Nickel	Ni	0.92	0.88	1.25	0.82	0.99	0.98
Selenium	Se	0.50	0.50	0.50	0.50	0.50	0.50
Silver	Ag	0.04	0.04	0.04	0.04	0.04	0.04
Zinc	Zn	24.1	21.1	27.6	6.74	21.6	25.7

June-October % above standard 2013					
> chronic		median			
0%	0%	2.31			
0%	0%	0.05			
0%	0%	0.37			
60%	40%	3.92			
100%	0%	2.82			
0%	0%	0.98			
0%	0%	0.5			
0%	0%	0.04			
20%	0%	21.6			

median				
2.31				
0.05				
0.37				
3.92				
2.82				
0.98				
0.5				
0.04				
21.6				

	Element	5/13/14	6/10/14	7/15/14	8/19/14	9/16/14	10/14/14
2014	hardness	21	21.5	22.6	22.3	21.4	20.7
	рН	7.79	7.31	7.24	9.26	7.38	6.18
	Deg-C	17.8	21.4	25.4	23.4	18.6	16.1
Arsenic	As	0.847	1.16	1.72	2.14	2.18	1.83
Cadmium	Cd	0.05	0.05	0.05	0.05	0.05	0.05
Chromiun	Cr	0.33	0.29	0.23	0.23	0.33	0.32
Copper	Cu	3.65	3.08	2.86	3.53	3.13	3.10
Lead	Pb	1.23	1.3	1.31	1.24	1.95	<mark>1.69</mark>
Nickel	Ni	0.804	0.78	0.66	0.67	0.62	0.765
Selenium	Se	0.50	0.50	0.50	0.50	0.50	0.50
Silver	Ag	0.04	0.04	0.04	0.04	0.04	0.04
Zinc	Zn	25.9	7.6	10.8	8.43	9.83	9.27

June-October % above standard > chronic > acute				
0%	0%			
0%	0%			
0%	0%			
60%	0%			
100%	0%			
0%	0%			
0%	0%			
0%	0%			
0%	0%			

median	change
1.83	~
0.05	
0.29	、
3.10	<
1.31	<
0.67	~
0.5	
0.04	
9.27	<

exceeds or could exceed acute standard exceeds or could exceed chronic standard 0.50 red, bold font indicates <MDL

Future of the project and the islands:

- Recently catalogued as a KC stormwater facility.
- Remove tenacious reed canary grass plant: drowning and black plastic?
- Monitor water quality into the near future to separate directional changes from year-to-year variability.
- Follow biofilm nutrient sequestration on dynamic media columns.
- Sample root mass for biofilm nutrients?
- Evaluate planted species for ultimate size, growth rate, and ease of maintenance.
- Evaluate island structural components for longevity and durability.
- Add to our frisbee and rock collections.

