Apparue il y a 3,8 milliards d'années, l'algue bleue possède de fortes qualités d’adaptation. Sans être à l'origine de la pollution d'un milieu, elle en bénéficie et elle fait son apparition durant le processus d'eutrophisation des lacs.

Ce petit végétal qu'est l'algue bleue fait partie de la grande famille des cyanobactéries. On en connaît plus de 7500 espèces réparties dans plus de 150 genres. Dès leur apparition sur terre, elles ont contribué à l'expansion des formes actuelles de vie par la production d'oxygène par photosynthèse. Leur pullulation, favorisée par l'eutrophisation des eaux, pose divers problèmes dont l'obstruction des systèmes de filtration. Les algues bleues peuvent aussi changer la couleur de l'eau et lui donner mauvais goût.
Il existe une quarantaine d'espèces qui représentent un risque pour la santé humaine. Celles-ci sécrètent ou contiennent des cyanotoxines qui, généralement, sont des neurotoxines pouvant affecter mortellement divers animaux, dont l'humain.
La recette pour favoriser le développement des cyanobactéries est simple. Elles croissent dans les eaux peu profondes, calmes ou immobiles, tièdes et riches en nutriments. Ces nutriments proviennent entre autres de sources diffuses ou ponctuelles de phosphore et d'azote, dont le ruissellement, l'érosion ainsi que les fosses septiques et déjections animales qui transportent des coliformes fécaux.
Il est donc fortement recommandé de naturaliser et végétaliser le bord des lacs et d'y planter des végétaux répertoriés dans le Répertoire des plantes recommandées pour l'aménagement des berges.

La résistance faite algue

Les cyanobactéries ont su résister au temps. Le fait qu'elles ne flottent pas à la surface, mais entre deux eaux prend toute son importance l'hiver. En effet, durant la saison froide, les autres algues se retrouvent au fond du lac où des bactéries s'activent à les décomposer. Au contraire, les algues bleues restent hors de portée de ces mêmes bactéries, ce qui facilite leur développement à

Contamination d'un plan d'eau par des cyanobactéries: à droite, on voit des terres agricoles n'étant pas bordées par des zones de filtration et à gauche, une partie d'un terrain de golf. On a observé des fragments de colonie s'éloignant de leur colonie d'origine à une vitesse de 3,6 m à I'heure. La contamination d'un lac entier peut donc se faire très rapidement.
Photo: Michael Knall
long terme. On en a même trouvé des tapis de plusieurs centimètres d'épaisseur sous plus de 5 m de glace permanente!
Leur développement atteint son apogée en été. La capacité de l'algue bleue à fixer l'azote de l'air, particularité que peu d'algues possèdent, lui permet de croître au détriment d'autres végétaux présents.
Une autre spécificité primordiale de la cyanobactérie est qu'elle résiste mieux aux rayons ultraviolets que plusieurs autres algues. Cette caractéristique incite à croire que son développement n'ira qu'en s'accroissant dans la perspective de l'amincissement de la couche d'ozone au cours des prochaines années.

Faune et flore ne mentent pas

L'algue bleue signale un environnement pollué puisqu'elle apparaît toujours durant le processus d'eutrophisation des lacs. Durant ce processus, la quantité d'oxygène disponible diminue et les sédiments s'accumulent rapidement.
La faune et la végétation présentes dans le plan d'eau sont autant d'indices pour déterminer son statut eutrophe. Ainsi, un lac eutrophe abrite des poissons tels la barbotte et le crapet-soleil, espèces plus résistantes à un taux d'oxygène plus bas que les autres poissons d'eau douce. \Rightarrow

[^0]

Brasenia schreberi
Photo: Robert H. Mohlenbrock @ USDA-NRCS.

Les cyanobactéries peuvent former des
filaments dépassant un mètre de long.
Formés d'unicellulaires, ces fils sont parfois animés de mouvements saccadés. Photo: NASA

Efflorescence à la surface d'un étang bordé d'un muret. Certaines colonies emprisonnent des bulles qui les font flotter et leur permettent d'être emportées par le courant.
Photo: Lamiot
Du côté végétal, la présence de Myriophyllum spicatum en grande quantité ainsi que de Brasenia schreberi sur la surface de l'eau témoigne d'un environnement asphyxiant très riche en nutriments, un état typique de l'eutrophisation.

Ces éléments sont des signes qu'il ne faut absolument pas ignorer. Il est impératif d'agir rapidement, surtout avant que des filaments verts colonisent lacs et étangs.

Plusieurs coupables

Les coliformes fécaux ne proviennent pas uniquement des sources sanitaires humaines. Plusieurs animaux, dont les canards, sont aussi de grands pollueurs de lacs. Il devrait être interdit de nourrir ces oiseaux puisqu'en les nourrissant, le ratio de canards par lac est artificiellement gonflé.
Robert Lapalme écrit dans son livre Protéger et restaurer les lacs qu'un seul couple de canards nourri par l'humain suffit pour rendre un lac impropre à la baignade en quelques années. S'ils se nourrissent à même les ressources naturellement disponibles dans l'environnement, leur présence n'est toutefois pas à proscrire. Les aménagements fauniques tels que ceux prônés par la Société Audubon et Canards illimités sont donc fortement suggérés.

Les murets de béton, de ciment ou de bois augmentent les dépôts de sédiments dans le fond du lac. D'abord, ils ne
permettent pas aux feuilles et aux végétaux morts d'atteindre les rives où ils contribueraient au profilage naturel de la berge. Ensuite, l'absence de berge naturelle ou naturalisée empêche la filtration de l'eau de ruissellement. Finalement, ces constructions contribuent à la hausse de la température de l'eau parce que, d'abord, on retrouve moins d'arbres en bordure de muret, puis parce qu'ils absorbent et rediffusent la chaleur des rayons solaires dans l'eau.
Ces murs sont la plupart du temps bordés de pelouse. La pelouse ne présente pas de problème en soi. Ce sont les soins qu'on lui prodigue qui remettent en question sa pertinence à cet endroit. Les résidus de tonte et l'utilisation d'engrais augmentent le taux de nutriments dans l'eau.

Limite de vitesse

Enfin, même si plusieurs autres causes méritent notre attention pour parvenir à résoudre le problème des algues bleues, signalons quelques effets de la gestion des fossés et rigoles. Des fossés mal creusés caractérisés par des pentes trop fortes et une profondeur exagérée peuvent être d'importantes sources de sédiments et de nutriments pour un lac. De plus, des fossés rectilignes à fort dénivelé ou complètement enrochés accélèrent le flux de l'eau.
Plus l'eau coule vite, plus elle est puissante, ce qui augmente son pouvoir d'érosion, particulièrement lors de fortes précipitations. Alors, l'eau de ruissellement n'est pas absorbée par le sol durant le trajet à cause d'une trop grande vélocité. Ainsi, elle apporte aux plans d'eau des particules de sol fortement imprégnées d'azote, de phosphore et d'autres substances qui nuisent à la qualité des cours d'eau.

Un impact positif?

Paradoxalement, la présence d'algues bleues a peut-être eu un impact positif dans la province. Auparavant, les végétaux indigènes volaient rarement la vedette dans les étalages. Mieux encore, l'intérêt pour la compréhension de nos écosystèmes grandit dans la population, ce qui permet notamment le développement et l'application de biotechnologies, en plus de susciter une volonté de préserver, sinon de restaurer les milieux humides.

L'intérêt et l'acquisition de connaissances font leur œuvre; l'idée d'une existence humaine en harmonie avec le milieu a la cote.

Bientôt dans un terrain de golf près de chez vous: marais et étangs filtrants! QV

Xavier-Antoine Lalande est rédacteur indépendant et horticulteur.

[^0]: Les algues bleues en détail
 Les cyanophycées vivent presque partout, y compris dans des conditions extrêmes, des glaces polaires aux sables des déserts. Elles survivent dans les lacs très chauds ou acides, dans les cratères volcaniques ainsi que dans les geysers. Elles croissent tant en eau douce que salée. Elles se développent particulièrement bien dans certains milieux pollués ou en voie de pollution par les activités humaines où elles forment des fleurs d'eau (b'ooms) de couleur particulière. On est témoin de ces efflorescences algales quand I'eau contient de l'azote ou du phosphore en excès dans les plans d'eau à faible débit. L'aération des étangs est donc une première mesure de prévention contre la contamination.
 Les algues bleues sont reconnues pour n'avoir que très peu d'ennemis naturels et pour éliminer les espèces concurrentes, tout en échappant mieux que d'autres à la prédation.
 Source: Wikipedia

